If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+13=41
We move all terms to the left:
7y^2+13-(41)=0
We add all the numbers together, and all the variables
7y^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| 300=3n+90 | | 6(2e+4)=-3e-2 | | 2(3n+4)=2(n+18) | | 9-3x=6+3x-6 | | 26=-22+4n | | -2x-6x=4/7 | | 17+a=34 | | 3/8=z/21 | | 6=3n-9 | | 19/9=4/a | | 2n+8=62 | | 5/k=8/10 | | 2n+8=63 | | 18/3=2/c | | 3/8(15x-4)=-12 | | -(8x-5)+6x-6=-1 | | 13n-7=-7 | | 11/15x=1/5 | | 4x+2(7.5)=-30 | | 45+-2x=35 | | 40=15-9y-2 | | 0.9x=2.2-0.2x | | X/7+1=x/6 | | 3n-75=75 | | 2x/6=0.5 | | (x/3)+11=180 | | x/7+1=x6 | | x/6=x/7+1 | | 3.d=81 | | 0.2x0.8^x=0.9 | | 20/p=4 | | 2/9=5/n |