7y+3y(y-8)=3(y+2)-3

Simple and best practice solution for 7y+3y(y-8)=3(y+2)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7y+3y(y-8)=3(y+2)-3 equation:



7y+3y(y-8)=3(y+2)-3
We move all terms to the left:
7y+3y(y-8)-(3(y+2)-3)=0
We multiply parentheses
3y^2+7y-24y-(3(y+2)-3)=0
We calculate terms in parentheses: -(3(y+2)-3), so:
3(y+2)-3
We multiply parentheses
3y+6-3
We add all the numbers together, and all the variables
3y+3
Back to the equation:
-(3y+3)
We add all the numbers together, and all the variables
3y^2-17y-(3y+3)=0
We get rid of parentheses
3y^2-17y-3y-3=0
We add all the numbers together, and all the variables
3y^2-20y-3=0
a = 3; b = -20; c = -3;
Δ = b2-4ac
Δ = -202-4·3·(-3)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{109}}{2*3}=\frac{20-2\sqrt{109}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{109}}{2*3}=\frac{20+2\sqrt{109}}{6} $

See similar equations:

| 340+2x+2x=540 | | 4.8/2z+15=0.2/5 | | 9k=20k | | 684.45=39​(x+2.55​) | | 2n-2+2n-2=5 | | 45-2h=5 | | 9.5f=7.5f-16.2 | | 8x-177=2x-9 | | C=36x+200,x | | -9m=9-6m | | 17v+16=20v-14 | | -5p+18p+4=20+12p | | 4(2x-7​)=8​ | | 2x-2+3-2x=7 | | 6x-13=-53x-5 | | -5p+18p+4=20=12p | | 6x+13=-53x-5 | | -4t=t-10 | | n×$5.06=$506.00 | | -3+8u=9u | | -8z-5-4=-9+9z | | 67.2=8(m+2.2) | | 68+x+(x-24)=180 | | 2p-1=3p-8 | | 10g+7=9g | | -8u+2=-6u+2 | | -8+2=-6u+2 | | |5x-1|=11 | | -5+4j=51 | | -8-4z=-3z | | 9(6-1)=n | | 2×n-3=7 |

Equations solver categories