If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7y(y + -4) + 5y = -28 Reorder the terms: 7y(-4 + y) + 5y = -28 (-4 * 7y + y * 7y) + 5y = -28 (-28y + 7y2) + 5y = -28 Reorder the terms: -28y + 5y + 7y2 = -28 Combine like terms: -28y + 5y = -23y -23y + 7y2 = -28 Solving -23y + 7y2 = -28 Solving for variable 'y'. Reorder the terms: 28 + -23y + 7y2 = -28 + 28 Combine like terms: -28 + 28 = 0 28 + -23y + 7y2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 4 + -3.285714286y + y2 = 0 Move the constant term to the right: Add '-4' to each side of the equation. 4 + -3.285714286y + -4 + y2 = 0 + -4 Reorder the terms: 4 + -4 + -3.285714286y + y2 = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -3.285714286y + y2 = 0 + -4 -3.285714286y + y2 = 0 + -4 Combine like terms: 0 + -4 = -4 -3.285714286y + y2 = -4 The y term is -3.285714286y. Take half its coefficient (-1.642857143). Square it (2.698979592) and add it to both sides. Add '2.698979592' to each side of the equation. -3.285714286y + 2.698979592 + y2 = -4 + 2.698979592 Reorder the terms: 2.698979592 + -3.285714286y + y2 = -4 + 2.698979592 Combine like terms: -4 + 2.698979592 = -1.301020408 2.698979592 + -3.285714286y + y2 = -1.301020408 Factor a perfect square on the left side: (y + -1.642857143)(y + -1.642857143) = -1.301020408 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -49=x^2-14x | | 3a-4+2a+5+111=180 | | 5y(y-4)+5y=-28 | | 2(31)-5(3x+1)= | | 5x-2x+7-x= | | 5m-3=2m-10 | | 5-m+4+4m= | | 3x-10=25+x+15 | | 2x-4(4-9x)=8(6x+2) | | x:5=6 | | 434344-59384= | | -22t+5t^2-48= | | x/3+4=1 | | 4n-14n=90 | | y=-(x+3)(x-8) | | 119-143= | | 3x+143=119-143 | | 7x=282 | | -3[3x-(2x+5)]=-4[3(2x-4)-3x] | | 4a=104 | | 4x+112=56-112 | | 500=x^2-14x+485 | | 100=x+92 | | 4x+112= | | -2.3u=-18.4 | | 16+(5-X)-2=-14 | | 10-4x=2x-8 | | -5+2a=a-3 | | 7x-4-3x=4x-3 | | -5x^2+30x=0 | | 35+c=159 | | 12x+5=128-85 |