If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7y(9y + -16) = 14 + -1(-1y + 19) Reorder the terms: 7y(-16 + 9y) = 14 + -1(-1y + 19) (-16 * 7y + 9y * 7y) = 14 + -1(-1y + 19) (-112y + 63y2) = 14 + -1(-1y + 19) Reorder the terms: -112y + 63y2 = 14 + -1(19 + -1y) -112y + 63y2 = 14 + (19 * -1 + -1y * -1) -112y + 63y2 = 14 + (-19 + 1y) Combine like terms: 14 + -19 = -5 -112y + 63y2 = -5 + 1y Solving -112y + 63y2 = -5 + 1y Solving for variable 'y'. Reorder the terms: 5 + -112y + -1y + 63y2 = -5 + 1y + 5 + -1y Combine like terms: -112y + -1y = -113y 5 + -113y + 63y2 = -5 + 1y + 5 + -1y Reorder the terms: 5 + -113y + 63y2 = -5 + 5 + 1y + -1y Combine like terms: -5 + 5 = 0 5 + -113y + 63y2 = 0 + 1y + -1y 5 + -113y + 63y2 = 1y + -1y Combine like terms: 1y + -1y = 0 5 + -113y + 63y2 = 0 Begin completing the square. Divide all terms by 63 the coefficient of the squared term: Divide each side by '63'. 0.07936507937 + -1.793650794y + y2 = 0 Move the constant term to the right: Add '-0.07936507937' to each side of the equation. 0.07936507937 + -1.793650794y + -0.07936507937 + y2 = 0 + -0.07936507937 Reorder the terms: 0.07936507937 + -0.07936507937 + -1.793650794y + y2 = 0 + -0.07936507937 Combine like terms: 0.07936507937 + -0.07936507937 = 0.00000000000 0.00000000000 + -1.793650794y + y2 = 0 + -0.07936507937 -1.793650794y + y2 = 0 + -0.07936507937 Combine like terms: 0 + -0.07936507937 = -0.07936507937 -1.793650794y + y2 = -0.07936507937 The y term is -1.793650794y. Take half its coefficient (-0.896825397). Square it (0.8042957927) and add it to both sides. Add '0.8042957927' to each side of the equation. -1.793650794y + 0.8042957927 + y2 = -0.07936507937 + 0.8042957927 Reorder the terms: 0.8042957927 + -1.793650794y + y2 = -0.07936507937 + 0.8042957927 Combine like terms: -0.07936507937 + 0.8042957927 = 0.72493071333 0.8042957927 + -1.793650794y + y2 = 0.72493071333 Factor a perfect square on the left side: (y + -0.896825397)(y + -0.896825397) = 0.72493071333 Calculate the square root of the right side: 0.851428631 Break this problem into two subproblems by setting (y + -0.896825397) equal to 0.851428631 and -0.851428631.Subproblem 1
y + -0.896825397 = 0.851428631 Simplifying y + -0.896825397 = 0.851428631 Reorder the terms: -0.896825397 + y = 0.851428631 Solving -0.896825397 + y = 0.851428631 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.896825397' to each side of the equation. -0.896825397 + 0.896825397 + y = 0.851428631 + 0.896825397 Combine like terms: -0.896825397 + 0.896825397 = 0.000000000 0.000000000 + y = 0.851428631 + 0.896825397 y = 0.851428631 + 0.896825397 Combine like terms: 0.851428631 + 0.896825397 = 1.748254028 y = 1.748254028 Simplifying y = 1.748254028Subproblem 2
y + -0.896825397 = -0.851428631 Simplifying y + -0.896825397 = -0.851428631 Reorder the terms: -0.896825397 + y = -0.851428631 Solving -0.896825397 + y = -0.851428631 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.896825397' to each side of the equation. -0.896825397 + 0.896825397 + y = -0.851428631 + 0.896825397 Combine like terms: -0.896825397 + 0.896825397 = 0.000000000 0.000000000 + y = -0.851428631 + 0.896825397 y = -0.851428631 + 0.896825397 Combine like terms: -0.851428631 + 0.896825397 = 0.045396766 y = 0.045396766 Simplifying y = 0.045396766Solution
The solution to the problem is based on the solutions from the subproblems. y = {1.748254028, 0.045396766}
| 4m+n=20 | | 3(-3)-6= | | 70/43*61/14= | | 6p(8p+5)= | | T=212-(0.00184)h | | 6.9+1.3j=3.13 | | 4x^2+9y^2-54y-63=0 | | 14x-270=4x-10 | | -3x^4(5x^3)= | | 2.4x-5.42=0.10 | | 5x-10=6x+1 | | 73y=24(3y+10) | | x^4-45=580 | | 0=14y-y^2 | | 4x^2+39x+90=684 | | 21+w=p | | -5=c+6 | | 22x^2-29x+9=0 | | -7v+3v-8=16 | | 3x^3-x^2-11x+6=0 | | (-p^4qr^3)(5pq^4r^2)= | | 2*(b-8)=5+9b | | 42x+14y+56z= | | 1/111c=9 | | 5.6y-6.9=8.22 | | 21=j-2 | | 6.2x+1.8=4.28 | | 25d^2-75d^3=0 | | 2x+(-7)=3 | | 4(3v-3)+7v+4=6(v+6)+2v | | -3x^2(2x)(2x^3)= | | (ln3.5)/.1088 |