If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=686
We move all terms to the left:
7x^2-(686)=0
a = 7; b = 0; c = -686;
Δ = b2-4ac
Δ = 02-4·7·(-686)
Δ = 19208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19208}=\sqrt{9604*2}=\sqrt{9604}*\sqrt{2}=98\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-98\sqrt{2}}{2*7}=\frac{0-98\sqrt{2}}{14} =-\frac{98\sqrt{2}}{14} =-7\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+98\sqrt{2}}{2*7}=\frac{0+98\sqrt{2}}{14} =\frac{98\sqrt{2}}{14} =7\sqrt{2} $
| b2-2=76 | | n2-10=38 | | -8n2=-616 | | -2k2=-16 | | n2-7=-11 | | 2x-6+6x-2=180 | | -15x=-13 | | 8x-6=10x8 | | 3/4x-6=10 | | 4x+-18=-10 | | 4d-23=17 | | 5(x-1)(x-3)=0 | | 5(x-1)(x=3) | | (-2y-4)^2+4y^2=16 | | (y-2)^2=-4+y+4 | | (y-2)^2=y | | (3-y)^2+(y+2)^2=25 | | 6x-7=7+ | | 3(8-4y^2)-y^2=11 | | 9w-17w=40 | | 0.3(90+x)=72 | | 0.1(13+x)=14.3 | | 11(.0765)=x | | 10h-15=-15+10h | | 8y-2y=132.y= | | 3x^2+19x-4=0 | | 3^x^2+19x-4=0 | | 20-3k=k+3 | | x=(0.75)^1/7 | | X+.2x=950 | | 9e(5e+6)+90=180 | | -3m=2m-4 |