If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=51
We move all terms to the left:
7x^2-(51)=0
a = 7; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·7·(-51)
Δ = 1428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1428}=\sqrt{4*357}=\sqrt{4}*\sqrt{357}=2\sqrt{357}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{357}}{2*7}=\frac{0-2\sqrt{357}}{14} =-\frac{2\sqrt{357}}{14} =-\frac{\sqrt{357}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{357}}{2*7}=\frac{0+2\sqrt{357}}{14} =\frac{2\sqrt{357}}{14} =\frac{\sqrt{357}}{7} $
| 4x+2+6x-1=14 | | -3+n-19n=-20-19n | | 8x+8(1.5x)=544 | | -1+3k=-6k-10 | | x+17+x+33=54+x | | 2d=3d+3 | | -5(0)+3y=22 | | 7^(x-2)+7=0 | | -5(-4.4+0.6y)+3y=22 | | 13z=12z-13 | | -9-10h=5-8h | | 9+5j=-6+10j | | -9w=7-8w | | -6m+9=7-4m | | .10x+x=110 | | (2x-8)=4x-38 | | 8r+7=-10+10r-3 | | -9w+24=-3(w-6) | | 3w+7=19 | | 3w=7=19 | | 9b+10=5+8b | | 9w=10w+5 | | -6k-3=-7k-3 | | -2j-7=-3j | | -3w=5w-8 | | 1.75n=n | | 13x-42=7x-18 | | -4-8c=-7c | | 9+5m=-4m | | 10/25-35+x=300 | | -(4y-6)-(-3y-8)=-3 | | 8/13=w/52 |