If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=35
We move all terms to the left:
7x^2-(35)=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| 9-7r+34=4(1-3r) | | 4x+x-15+13-8=13 | | 4.4-1/6+h=1/6 | | 9p²-729=0 | | -6=2/6x | | 2x^2+x+1/4=-1/4 | | 4y-10=50-y | | 0.25(7y+4)-17=-0.5(3y-8) | | -19=2u-5 | | 15-2r=3rr= | | n11=58 | | 3x+11=5x-27 | | 9/5=y+1/5 | | 1=4+3v | | 4x/5-3/2=2/3+1/3x | | 4x+9=34-x | | 2(m+3)=-22 | | 11t−10t=9 | | 3+u/2=11 | | 12x-7=48+x | | 6x^2+3x+9/144=-1+9/144 | | 2(2x-3)-4x=17 | | 5n-2/8=3n-5 | | 8y-10=14-6y | | x-10/2=-17 | | 3(1.063x+1)=9 | | 8y-10=+14-6y | | 8-10x=-52 | | 3x+2(x-4)-4(13-2x)=(6x-3)•(-2)+3x | | 9z-4=24 | | P(x)=18000(1-0.012)750 | | 3x+4=1/2x-5 |