If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=30
We move all terms to the left:
7x^2-(30)=0
a = 7; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·7·(-30)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{210}}{2*7}=\frac{0-2\sqrt{210}}{14} =-\frac{2\sqrt{210}}{14} =-\frac{\sqrt{210}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{210}}{2*7}=\frac{0+2\sqrt{210}}{14} =\frac{2\sqrt{210}}{14} =\frac{\sqrt{210}}{7} $
| 6c-3=8c=11 | | 594=27(h+5) | | 12(p-894)=516 | | 5c-25=45-2c | | -15v-40=32-8v | | 13x-2=5x-7 | | (3x+34)+(2x+56)=180 | | 14w+87=927 | | y=-2(5)=8 | | 11x+(-15)=8 | | 360=2a+8+128+2a | | 12q+3q-12q=12 | | 3,042=39(p+35) | | -0,1a-2,4=-1,6 | | g/11+329=347 | | 24d+10=130 | | 40+n=57 | | g-437/19=28 | | 3x-9+5=3x+5 | | -0,1a-2,4=1,6 | | 28=q-16 | | 2a+8=2a | | 9^x+3=22 | | (x+4)-(2x+5)=3x-1 | | 10x+75=18 | | s/18-4=5 | | 15+5=7x-3 | | 9x+11=-8 | | g/31+107=113 | | x-57=88 | | m=18/8(30)+11.7 | | 2n+8=37 |