If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=23
We move all terms to the left:
7x^2-(23)=0
a = 7; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·7·(-23)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*7}=\frac{0-2\sqrt{161}}{14} =-\frac{2\sqrt{161}}{14} =-\frac{\sqrt{161}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*7}=\frac{0+2\sqrt{161}}{14} =\frac{2\sqrt{161}}{14} =\frac{\sqrt{161}}{7} $
| 5y=35=10 | | 301=7(1+6m) | | 3(r-1)-4(r-2)=-5 | | 4(x—3)=-32 | | c-2+5=4 | | (62.92960)(x)+(64.92779)(1-x)=63.546 | | 3-5=3-2k-3k | | x(2x-10)=40 | | .1x^2+x+5=0 | | -40=4j+48 | | 0=1.6x+12.8 | | h/6-16=-12 | | 9a+4-2=0 | | 7.8y-4.9–5.4y=2.3 | | -16+m=31 | | (v+14)=2(3v2−52) | | 1/6(x-5)=1/2x6) | | 2s-7=1 | | 6(5-8v)+12=-54 | | -6u-5=19 | | -54=5(2+4r)+4(4-r) | | 18=3/4x-3 | | -2(5+11x)=10(1-2x) | | 3/4(2y)-8=6 | | -39+2x-8x=45 | | (4x-9)+75=129 | | 40+60=y-10 | | -25=-5(1+5k)-(-4k-1) | | 2(4.6x–4.2)+1.9=2.7 | | 3^4x-2=13 | | -9(v+3)+3v+7=8v+7 | | 2(4.6–4.2)+1.9=2.7x |