If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-7x-13=0
a = 7; b = -7; c = -13;
Δ = b2-4ac
Δ = -72-4·7·(-13)
Δ = 413
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{413}}{2*7}=\frac{7-\sqrt{413}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{413}}{2*7}=\frac{7+\sqrt{413}}{14} $
| F(c)=9c÷5+32 | | 3i-2=7 | | 18=9-7z | | 2/3x-5/6=11/18 | | 4.9t²-5.9t-50=0 | | -7(2p+4)-42=2(3p+5) | | 0.2xx=-15 | | 4^x–2=1/8 | | 45=90/x | | (x+6)²=12x= | | x3=1782 | | 1/3x+4.75=10.85 | | 3√(x+2)+√(2x+3)=2√(2x+6) | | 15(t-4)-2(t-9)+5(t-6)=0 | | f-16=21 | | x2-56=25 | | 3y+3/2=15/12 | | 329=125+16h | | 4x=14+9(2) | | 2.25(4x-4)=10+10x | | S=√(24m) | | (2x-1)(x+3)=-2x | | T=2x-2 | | 125+16h=329 | | 8m+4=3(m,-1)+7 | | 5−7x=3−5x | | 3819=n−520 | | X+3/x-1=x | | 1x−3=3x−5 | | .75x-3.25=6.75 | | x/100=31.29/208.56 | | 4x-5+3x=7x-8 |