If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-19=1556
We move all terms to the left:
7x^2-19-(1556)=0
We add all the numbers together, and all the variables
7x^2-1575=0
a = 7; b = 0; c = -1575;
Δ = b2-4ac
Δ = 02-4·7·(-1575)
Δ = 44100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{44100}=210$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-210}{2*7}=\frac{-210}{14} =-15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+210}{2*7}=\frac{210}{14} =15 $
| 3.67+6g=32.83 | | 20=a-6 | | x-(10)=-20 | | 5m−29=66 | | y2–8y–56=0 | | w-4.6=0 | | 12a=+18 | | x-8=4x+2 | | 4b+40=80 | | 32.83=6g+3.67 | | 2x^2-36x-525=0 | | 12x-19=10x+31 | | 15y=+12 | | x-8=4^(x+2) | | -3x-10=-46= | | A(n)=21+10n | | x5−9=−4 | | 1/3y-2/5=-1/4 | | 12=d+7 | | 6=5s+9 | | 5-4+7x+1=6x+8 | | .|x−3|=6 | | 5s=-3 | | 10x+10=2x+32 | | 5s+9=-3 | | -3+11c=5+12c | | 5-4(a-3)=a-2(a-1) | | 10-5(x-2)=2+4x | | 28.54=6g+3.52 | | 5x+19x-10=6(4x+6) | | |8n-9|+13=9 | | 5-4+7x+1=6x+0 |