If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-15x-25=0
a = 7; b = -15; c = -25;
Δ = b2-4ac
Δ = -152-4·7·(-25)
Δ = 925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{925}=\sqrt{25*37}=\sqrt{25}*\sqrt{37}=5\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{37}}{2*7}=\frac{15-5\sqrt{37}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{37}}{2*7}=\frac{15+5\sqrt{37}}{14} $
| 3a+1=2a+4 | | 7x2-15x+25=0 | | 2/5+y=15/4 | | 2w+4=w-7 | | -15w+-10+4w=6w/2 | | 4(x+2)=3x-10 | | x^2/(0.01-x)=10^-2.15 | | x^2/0.01-x=10^-2.15 | | (x)=2x+6x-3 | | 11b+198-12b+6=-4b+36 | | 4q^2-8q+4=0 | | 2/7x+17/3=3 | | 0=-5x^2+40x+1.2 | | 10x+15=25 | | x=-57/2 | | 4x+10=5-5x | | -61=42x-103 | | −6x=84 | | (3x-4)/(5-2x)=5 | | 5x2-16x+13=0 | | X+1,5=3x+5,5 | | (X-1/2)^3-x(x+1/4)^2+23/16=0 | | x =2x-3 | | 5(s+9)^2-44(s+9)=9 | | 4/x=0.01625 | | (2/x)-5=4x+2 | | 2/9-1/15y+6/5=8y-56/9 | | x=5+(2)/(2-x) | | x/12+3=4 | | 2x2+8/3x=0 | | 6a*a+a-2=0 | | 15+13x/4+19=60 |