If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-13x=0
a = 7; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·7·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*7}=\frac{0}{14} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*7}=\frac{26}{14} =1+6/7 $
| 6x-90=130-5x | | T2-12t+3=0 | | 2(x+1)^(4/3)-1=31 | | (7−b)+(3b+2=) | | 4x-30=6x-20 | | 4n-6=6n+22 | | -7(2+5a)+8(a-2)=-57 | | 3x-18=-6x-9 | | 5n^2-80n+320=0 | | 6(7u+7)=378 | | X4-29x2+100=0 | | 1/5x+2=1/3 | | |6-2p|=16 | | 3.95s+1.25=7.70 | | 9+4n=-15 | | -108+6x=74-8x | | X^2+12x+48=4 | | 6p^2-13p=-5 | | 6(x+1)+5=13+-2+6x | | 4-(x+2)+3x=7 | | 2x^2-12x=-21 | | S=9q+218 | | 4-(6x+4)=2-x | | 9x-3(x-2)=22-x | | 2x+(x+5)=53 | | X+22=11x+2 | | 13x+3=29x-52 | | 5n+3n+n-5=26 | | 11t-40=180 | | -16=6(n+5)+8(8n+3) | | .5x=1x+5 | | 5-(7x+5)=7-x |