If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-13x+6=0
a = 7; b = -13; c = +6;
Δ = b2-4ac
Δ = -132-4·7·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-1}{2*7}=\frac{12}{14} =6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+1}{2*7}=\frac{14}{14} =1 $
| 6x-43=180 | | 6(2x-8)-3=6(x-3)+9 | | 2z-4-z=11 | | -x2-4x+5=0 | | 82=10-4n | | 2x+7+x=3-9x-8 | | (-6x)+9=(-4x)-3 | | 2(a+7)-7=12 | | -6+9=(-4x)-3 | | -9h=78 | | 51-56=44x | | 6(h=4)+-2 | | 2/4y=2 | | x−2=−12 | | 25=+1.25r | | 3y+1=63 | | 200m-75m+53075=55550-150m | | 3x+6=1/3 | | x*305-(x-50+150)=34800 | | 4.9x^2+18.1x=0 | | 9^(3x^2)=80 | | D=9/7(m-29) | | (x/2)-4=-10 | | 2x+15+x+15+3x-20=360 | | 5y-84y=9y+10 | | 8(m+2)-4+3m=3(4m+8)-m | | 0.25=x-40/8 | | 135=m | | 4x+30+6x-20+5x+5=180 | | 2/3*6x=2x+30 | | X+(×+30)+(x+55)=2245 | | 4+7x=5x-4 |