If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+x=49
We move all terms to the left:
7x^2+x-(49)=0
a = 7; b = 1; c = -49;
Δ = b2-4ac
Δ = 12-4·7·(-49)
Δ = 1373
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1373}}{2*7}=\frac{-1-\sqrt{1373}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1373}}{2*7}=\frac{-1+\sqrt{1373}}{14} $
| 4x+58+5x-4+90=180 | | -12-9(t-3)=78 | | 4(3u-1)-4u=76 | | -2(b+3)+8=24 | | 4z+-3(12+z)=-30 | | m=-3/(-4-6) | | 6(c+4)-4c=72 | | 15=-5(y-9) | | 32x=34x | | -30=3(12-x) | | -6(h+12)=-12 | | -12(3-x)=12 | | -5=-2w-12 | | 3=1594.8/x | | 3x+24+x-19+x=180 | | (.85)^x=0.5 | | -3=3v=4 | | 10+x|2=6 | | 12v+7v=10v | | 8=x-1-8x | | 3x(4x-7=27) | | 14+5n=96 | | 8-6-4x=-6 | | (10x)+(5x-7)+(7x-1)=180 | | 5x–2=2x–11 | | -53=5x+ | | 3(2x+2)=11 | | 5x-5.0=25 | | 4x+20+2x+4x=180 | | -5z+2=57 | | 8x+4x=50-2 | | 7x+3=34-3 |