If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+9x=0
a = 7; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·7·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*7}=\frac{-18}{14} =-1+2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*7}=\frac{0}{14} =0 $
| 80=x+1,2x | | 2.3y+2.7y=10 | | 4y+7=y+2 | | 8z+4=2+4z | | 15x+9=5+3x | | 3n=2n-5/2 | | 4y+5/3=20/6y | | X=4/5(x+20) | | 2.3y-2.7y=10 | | 5/9-x/3=x/9 | | 7a+6=10a | | 1/5q=9(2/5)q | | 6y-12=y+3 | | -4(x+3)=-3 | | z/3-6=0 | | (X)=-4x/3-1 | | 2x-3+x+4=16 | | 2x+5/10=3x-7/6 | | 4x/3-x-1/2=1,1/4 | | 1. 4(5y–1)=3(6y+7) | | X/7=x-4/8 | | x/58−2=−3 | | 58x−2=−3 | | 35x=18 | | -4y^2+180y=90 | | 10x-5x+4/3)=7 | | 5/3x+7=2 | | 5x+4(2x-30)=25 | | 45=n+2(4+3) | | 4b=8+5b | | 3x-3=0.6 | | 6^2-12x4=6(6+0) |