If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x-2=0
a = 7; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·7·(-2)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{30}}{2*7}=\frac{-8-2\sqrt{30}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{30}}{2*7}=\frac{-8+2\sqrt{30}}{14} $
| 374=22c | | 3x+15°=42° | | (y-3)+(3y-8=) | | |2m|-11=-13 | | 24=-8b+16 | | 61/6=b31/2 | | 14-7a=-21 | | -2y+-2=8 | | -7x-8(-2x-6)=84 | | 26=b+20 | | 4(-2x+9)=3(-3+14)-1 | | x2-11/2=3/4 | | 3(-7y)+y=20 | | 132-w=251 | | 5r+17=42 | | 70-2x=45 | | y+110=180 | | 3c=5+23 | | 5(y+4)=4(y+5 | | -7(7-8k)-2k=167 | | 11x-4+4x-11+63-4x=180 | | y+2.21=5.23 | | 0x+21=2x+26 | | 61/6b=33/2 | | -5x+18+8x-25=2x-4x+28 | | y+y+110=180 | | w-1.76=8.4 | | 53=u/4+47 | | (x+2)-7=49 | | R=t/873.33-2.14 | | (2n-3)+n-4= | | u-3.1=1.4 |