If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+5=8
We move all terms to the left:
7x^2+5-(8)=0
We add all the numbers together, and all the variables
7x^2-3=0
a = 7; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·7·(-3)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{21}}{2*7}=\frac{0-2\sqrt{21}}{14} =-\frac{2\sqrt{21}}{14} =-\frac{\sqrt{21}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{21}}{2*7}=\frac{0+2\sqrt{21}}{14} =\frac{2\sqrt{21}}{14} =\frac{\sqrt{21}}{7} $
| (15x+10)=16x+4 | | -9=4/5x-2 | | x+7/3=-10 | | 125=(x+136) | | 29-3(4x+3)=4x+7 | | -4-w=-10 | | -10=-4v+2(v-8) | | x+-1.2x=27 | | 50-4(x+2)=2x-6 | | 10=8d+8=-10+6d | | 45xN=270 | | 7x+8=6x-20 | | 3^x-10=233 | | -5x+10=14 | | 6c-8=9 | | -x+27(-1)+31=0 | | -9j-9+3=10-7j | | 70(8x+2)=60 | | 5x+16=7x−16 | | 30(8+6x)=4x+2 | | (x)=(x)(-2x+8)(-2x+6) | | 8x-13=40 | | -9+3c=9+c | | 17x+6-2x+12=78 | | (5m)=(3m-4) | | 3v-5=5v+4+7v | | 1.5x-7=8 | | (2x+5)=44 | | 4^x+1/4^x=16*1/16 | | 7x+6+9x-2=68 | | 6w-33=3(4w)-5) | | 1-5q=-4q+9 |