If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+51x-40=0
a = 7; b = 51; c = -40;
Δ = b2-4ac
Δ = 512-4·7·(-40)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-61}{2*7}=\frac{-112}{14} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+61}{2*7}=\frac{10}{14} =5/7 $
| 1.33x-26=180 | | -4x-20=9x-5 | | d-(-19+28)=-32 | | 3x-48=6x | | ƒ(x)=7+4x | | 8=4t=13-t | | 9(7x-5)=-18 | | (76+-31)+c=-43 | | 60m+4=600 | | 9v^2=2+6V | | 5y-64=y | | 4x+10=3x-3 | | -2x+12=6x+(-4) | | b-(17+-48)=65 | | y-2.95=5.5 | | a+(-29+83)=37 | | -2(v-2)=3-2v | | 3x^2−7 | | 734=x-(-452) | | 3/t+4=12+3t | | 3x^2−7 | | 3x^2−7 | | 596+z=-342 | | 3x^2−7 | | f/23=28 | | 12a^2-43a+25=0 | | 7x−3(5x-4)=20 | | -1(3-x)=-2x9 | | 7x−3(5x-4)=20 | | 9x-6+8x-4=75 | | 4b+2=2b+7 | | z4+5=−21 |