If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+48x-7=0
a = 7; b = 48; c = -7;
Δ = b2-4ac
Δ = 482-4·7·(-7)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-50}{2*7}=\frac{-98}{14} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+50}{2*7}=\frac{2}{14} =1/7 $
| 2×(x-7)=14 | | 7g-7g+5g-2=3 | | 2•(x-7)=14 | | 5x=12=27 | | +2(11-h)=-5 | | s+s+1=17 | | 36+4x=6x-2 | | 2x3=-2 | | –m+9=–1 | | (4x-13)=x | | 4x-2-x=3 | | 8(1-5x)+40=13+5x | | 16a^2-25^2=0 | | (6x+20)=x | | 5/4=9/x+3 | | 3z+12=24+z | | x2+x–72=0 | | (6x+20)=(8x) | | 4x^2+24x-492=0 | | 4x+6x=-11+7x+1+4 | | -6=o | | 3m+6=72 | | 6x+40=26 | | b2-2b+1=0 | | 6x-24=26 | | |x-8|=2x+3 | | 2x2-2x=0 | | 2x+x-12=3x-2x | | 2y+5=-2y-3 | | 2x+1/6x-1=x-2/3x+4 | | 4x/6+5x/12=9x/24+51/24 | | (7x+10)=x |