If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+42x=0
a = 7; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·7·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*7}=\frac{-84}{14} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*7}=\frac{0}{14} =0 $
| 9w+3=7w+7 | | 3x-17=6x-41 | | 0.5(j+2)=6 | | 5-2q=15 | | 1x+25=95-2.5 | | 2+1.25f=10-1.75 | | -2(y-4)=20-2y-10 | | X/2+x/5=7/2 | | h^2=121; | | 7(x+4)=3x+16 | | 5(3x+2)+3(3x-3)=2x+89 | | 4y-5=18y+121 | | -1+6x=+x=-1 | | 186x=23 | | 3(x+2)/3x+6=0 | | -32=8-10x | | x÷23=3x÷18 | | 7(3-x)=8(4-2× | | 14+3x-7=7x+7-4 | | 5/9(f-32)=-7 | | (5x)+(8x-24)=180 | | 3(x+2)+4(x-5=10 | | (20x-10)+(8x-20)=140-6x | | s-22/7=21 | | 7(x+2)=6(×+5) | | 3/7a=7/8 | | 2/3=b+8/9 | | 7x+2=6+8x | | 15x-2=3=-11 | | .3(n-5)=0.4-0.2n | | -5(x+2)=48-(x+2) | | 9-(x+5)=5x+2 |