If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3x-5=0
a = 7; b = 3; c = -5;
Δ = b2-4ac
Δ = 32-4·7·(-5)
Δ = 149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{149}}{2*7}=\frac{-3-\sqrt{149}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{149}}{2*7}=\frac{-3+\sqrt{149}}{14} $
| 7=a7 | | 2.8+x^2=4.5 | | 7y-14=8y | | 9.9÷3=k | | 3w2-3w+6=0 | | s+0.9=7.9 | | 4/5=5/2r-11/4r | | -2p=-p+16 | | 2w^2+4w-2=0 | | 3x(2)=5x | | 4x^+35=64x^-3 | | 96=12y | | 2·0.7=k | | (0.25*x)+(0.333*x)=14 | | 8^2+x^2=20^2 | | p/3=6/9 | | x2-16-12=5 | | -8(n+6)=-7n-4 | | a/8=9/4 | | 3x+5-x=-3 | | 9u+12=21 | | 2=2h−4 | | -8+3a=5+a | | -8 = s−43-7 | | 2)2k+19=84 | | 5d+9=29 | | 10w+2w+w=4 | | x-4+6x=-10 | | 6x^2-12+20x=0 | | 1x+7=150^2 | | -5.1d+2.7=3.9d-2.7 | | v4− 2= 2 |