If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3.5x=0
a = 7; b = 3.5; c = 0;
Δ = b2-4ac
Δ = 3.52-4·7·0
Δ = 12.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.5)-\sqrt{12.25}}{2*7}=\frac{-3.5-\sqrt{12.25}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.5)+\sqrt{12.25}}{2*7}=\frac{-3.5+\sqrt{12.25}}{14} $
| (2x-3)51=100 | | 8(6+x)=264 | | t+15=6t | | 3a-43=2a | | o-32=49 | | 8n+73=1 | | 3v+27=15v-93 | | 12=h-8 | | 12=h−8 | | w-51/2=93/4 | | 6x+6+4x=26 | | -y/9+41=42 | | 10=z/27 | | 8=-3c+29 | | 5x-16=25 | | =(x+4)/2 | | 4(2x+4)=(3x+6) | | 8x+16=3x+6 | | 2r-1.3=1.7 | | 91-l=0 | | 4y+20=90 | | -4x-1=-5x+2 | | 2x+(12x^2)=360 | | -14=9s-2s | | -5y-12=38 | | 28+3x+1x=180 | | (2x+4)=(7x-13) | | 3+a+a=33 | | 16-k=4 | | 5w2+18w+9=0 | | {1}{4}z=8 | | c–1=6 |