If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+2=51
We move all terms to the left:
7x^2+2-(51)=0
We add all the numbers together, and all the variables
7x^2-49=0
a = 7; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·7·(-49)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*7}=\frac{0-14\sqrt{7}}{14} =-\frac{14\sqrt{7}}{14} =-\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*7}=\frac{0+14\sqrt{7}}{14} =\frac{14\sqrt{7}}{14} =\sqrt{7} $
| 4x-2=6x-21 | | 60/x=1/5 | | -2(v+3)=7v-42 | | -6n+8=50 | | 5d–3.3=7.2 | | 8-7a=-7-4a | | 4(2a+5)=36 | | 5/6w=7/6 | | -8w+29=-5(w-7) | | k-1=14 | | -8w+29=-5(w-7 | | 27=-5+4x | | -5(2x-1)-3=-1(x+4)-2 | | n+5−16=-1 | | (13x-1)=84 | | 25x+35=125 | | 11.03=8.78+.02x,x= | | 3x+5x+7=88+-4+x | | -2v+3=7v-42 | | -14=p-19 | | 52=44-7x+32+x | | -9+3a=9 | | -7+2x-18-7x=85 | | -15=-1+2r | | 3x^2-2(4x-3)^2=1 | | -1/15t=15 | | 7=0.25y+11 | | 2x^2+3x+3=7x(x+1)^0.5 | | -2{v+3}=7v-42 | | -18-4b+2b=b+6 | | 7x+11=83-3x | | -6=4-3x-13+5x-7 |