If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+20x=3
We move all terms to the left:
7x^2+20x-(3)=0
a = 7; b = 20; c = -3;
Δ = b2-4ac
Δ = 202-4·7·(-3)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-22}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+22}{2*7}=\frac{2}{14} =1/7 $
| 8u-(2-3u)(5u)=15u^2-2u | | 1/5(x-2)=3x-2(x-1)+32/5 | | -8x+12=38 | | 2y-2=4y+4 | | (2)/(7)x+18=8-(3)/(7)x | | 2(d+1)=5d–7 | | 3p+2p-58=0 | | 4+x=16-3x | | 3(4g+6)=2(6g+9 | | 14+2x-4=4x+8-2x | | |2g–5|=9 | | x+1/2=2 | | -4a+15=4a-3 | | |2x-4|=|×-1| | | 5(y-2)=15y | | 2x-3x=-24 | | 2x-4=×-1 | | 3k+5=-10+k | | 5.33-14.8p=-16.1p | | .22x=350 | | (1/4)k=3((1/4k)+3) | | 2+8b=-16-10b+17b | | 6-(1-4w)=-18 | | -7+12k=-17-4+14k | | -20-19.8y=-16.1y+19.95 | | y-8-13y=82 | | 6x=4/2+2x | | -f+9=-2f | | 51x-13x=114 | | -12u-20=-7u+20 | | 13x−4=−9(4+3x)+12 | | 0.11y+0.09(y+8000)=1720 |