If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+20x-3=0
a = 7; b = 20; c = -3;
Δ = b2-4ac
Δ = 202-4·7·(-3)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-22}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+22}{2*7}=\frac{2}{14} =1/7 $
| 3x-5(x-4)=-3+4x-13 | | -9/4v+4/5=+7/8 | | v+38=912 | | x/3+7x/8-3/6=x+7/2 | | 4(x^2)+2x-8=0 | | Y/3*11=y/2-3 | | 647=g-(-506) | | y÷-3=8 | | v-1.9=-6.1 | | 647=g-506 | | v-1.9=6.1 | | 3s=90 | | 12(p-5)+5=0 | | 95=z+18 | | k-7.1=-2.8 | | 9.7−4d=−2.3 | | 4.905t^2-3.4754t-0.72=0 | | n-0.7=-6.7 | | -9/4y+4/5=7/8 | | 2x+15=122 | | 10+k=2.9 | | h+38=44 | | 2x-7+9=2 | | X+y-2=180 | | 5c-3c=8 | | 6(2y-2)+8-3y=32 | | h+43=80 | | 9.81x^2-13.9466x+5.7975=0 | | 1^6n=4^4n+6 | | -3+12=2x-37 | | 12=-16+4x | | -n=16 |