7x2+2(2x+3)=2(3x2-4)+13x

Simple and best practice solution for 7x2+2(2x+3)=2(3x2-4)+13x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x2+2(2x+3)=2(3x2-4)+13x equation:



7x^2+2(2x+3)=2(3x^2-4)+13x
We move all terms to the left:
7x^2+2(2x+3)-(2(3x^2-4)+13x)=0
We multiply parentheses
7x^2+4x-(2(3x^2-4)+13x)+6=0
We calculate terms in parentheses: -(2(3x^2-4)+13x), so:
2(3x^2-4)+13x
We add all the numbers together, and all the variables
13x+2(3x^2-4)
We multiply parentheses
6x^2+13x-8
Back to the equation:
-(6x^2+13x-8)
We get rid of parentheses
7x^2-6x^2+4x-13x+8+6=0
We add all the numbers together, and all the variables
x^2-9x+14=0
a = 1; b = -9; c = +14;
Δ = b2-4ac
Δ = -92-4·1·14
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-5}{2*1}=\frac{4}{2} =2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+5}{2*1}=\frac{14}{2} =7 $

See similar equations:

| 2x*x=114 | | Y=1/2x+22 | | 0.25x-1.5=0.75-0.5x | | -129-4x=124-15x | | 31/2x=2 | | -83+14x=8x+97 | | x+3.5=15 | | 14(40−8x)=19x+2−5x | | 1-2y=-23 | | 20k+60K=10k+70k | | -2x-113=49-8x | | 2x-113=49-8x | | 7x−16=47 | | -89+10x=183-6x | | 6c+9=51 | | X+116=x+80 | | 3x-4=2(x-7) | | 25/100=x80 | | 25/2100=x/80 | | 2p-13=4p+11 | | 82/x=5/2 | | X^3-13x=107 | | r/99=60/108 | | r/99=60/108 | | n/45=8/9 | | 40=5y​ +36 | | 2x-9/x-4=x+4 | | 33/48=r/80 | | .33/48=r/80 | | 8+6y=29 | | 9(3-x0=81 | | x+4.29=10.5 |

Equations solver categories