If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+1=29
We move all terms to the left:
7x^2+1-(29)=0
We add all the numbers together, and all the variables
7x^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| x+3x+40+x=180 | | 45=f=48 | | 126h=7 | | 4.19x=1760 | | 1/7(3x+2)-1/5(1+4)=2 | | -8w=6 | | 365-125x=250-175x | | 1.60+2r=10 | | 50-3x=5(x+2) | | 6a+16=24 | | 5x+2=4(0.5x-5) | | 3(2−8n)=3n+6= | | 1.60b+2=10 | | (n*2+15)=n*5 | | 45+t=-2 | | s+6*2=39 | | 4÷5p=10 | | 2x-6+x-1+98=180 | | 6/7x-4=32 | | 6z-50=106 | | 6b+3=175 | | 5(n+4)-3n=32 | | 6608÷n=28 | | x(3+4)=4(x+3) | | 50+3x=250 | | j/32=4.5 | | 8x+13+x+8+15=180 | | 1.61/x=0.095 | | k-7÷8=211÷24 | | 1/7(3x+2)−1/5(x+4)=2 | | 3(x+1)+2=2 | | -2x-2x+18=12 |