If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+13x=61
We move all terms to the left:
7x^2+13x-(61)=0
a = 7; b = 13; c = -61;
Δ = b2-4ac
Δ = 132-4·7·(-61)
Δ = 1877
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{1877}}{2*7}=\frac{-13-\sqrt{1877}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{1877}}{2*7}=\frac{-13+\sqrt{1877}}{14} $
| 2/5(15-6x)=-6 | | 4.2x=37.8 | | 2b+17-1+4b-16=64+20 | | -4(2x-8)=112 | | 7-4=y-8 | | 2x^2-12x+24=58 | | 4a+5+3(a-2)=90 | | 4^x^-2=8^6 | | 3(×-4/3)=3x | | 38=4a | | 5d=5d-4 | | 3(×-4/3)=3x+ | | 7x-4+x=60 | | -9=-2x+7 | | 4(10)=3x+12-2x+8 | | -48=6.2(v+1.8) | | 6(t+2)-14=6t+2 | | 3y^2-11y+24=0 | | -7(3-t)=4(2t+) | | -t=9(t-15) | | 4/7x=2/3x | | 5x-45=3x | | 7=3+n/6 | | 5y=4735 | | 2.1t-22.2=7.3t-22.2 | | 4y+9=4y+7 | | 2x-5=1- | | x+118=-22 | | 2x-1/2=1/4+5x | | 7x/9+9+2x/9=-9 | | 3.5/4=x/6 | | 7.5(p-6)=68.3 |