If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+10=185
We move all terms to the left:
7x^2+10-(185)=0
We add all the numbers together, and all the variables
7x^2-175=0
a = 7; b = 0; c = -175;
Δ = b2-4ac
Δ = 02-4·7·(-175)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70}{2*7}=\frac{-70}{14} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70}{2*7}=\frac{70}{14} =5 $
| 6x+1–6=-5x+6 | | 5+10x=65 | | 4*10^x=88 | | 2x+15=110 | | 50+3x=80 | | 2x2+5=55 | | 4x2+39x–10=0 | | 3⋅2x⋅24=768 | | x2-9=20 | | 56+n=432 | | -4(q+15)=0 | | -19u+13u=-12 | | 19x+5x-15x=9 | | 63-n=36 | | -18y+3y=15 | | 10^(x-2)=1,000 | | 4n−–6=14 | | 4g-3g=-9 | | X+12+x+2x=40 | | 1/3(3x-9)=3x-5 | | 19u-15u-2=2 | | 7^y=200 | | 20p-15p-5=15 | | 11h-7h-4=8 | | 7h-3h=8 | | 3(3x+2=9x-7 | | -17=8m+3-2m | | x/18=7/3 | | 3+8p=15 | | 5x-2×x+x=68 | | 30x21=21 | | F(x)=5x³-25x |