7x-5(x-4)=4x(x+2)

Simple and best practice solution for 7x-5(x-4)=4x(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x-5(x-4)=4x(x+2) equation:



7x-5(x-4)=4x(x+2)
We move all terms to the left:
7x-5(x-4)-(4x(x+2))=0
We multiply parentheses
7x-5x-(4x(x+2))+20=0
We calculate terms in parentheses: -(4x(x+2)), so:
4x(x+2)
We multiply parentheses
4x^2+8x
Back to the equation:
-(4x^2+8x)
We add all the numbers together, and all the variables
2x-(4x^2+8x)+20=0
We get rid of parentheses
-4x^2+2x-8x+20=0
We add all the numbers together, and all the variables
-4x^2-6x+20=0
a = -4; b = -6; c = +20;
Δ = b2-4ac
Δ = -62-4·(-4)·20
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{89}}{2*-4}=\frac{6-2\sqrt{89}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{89}}{2*-4}=\frac{6+2\sqrt{89}}{-8} $

See similar equations:

| 4(v-10)-2=26 | | 6(x-1/3=-2(x+23 | | 3x+4+12x-3=-9x+1 | | 5x+10+2x=24 | | 12+2a=100 | | 6+a=100 | | -5-4m=9 | | 5x-9=121 | | 3/5i=6 | | x+x+0.20=16.5 | | 6x=-4x^2+7 | | n+77=49 | | 3a-0.5a=10 | | 24+2x+8=3x+6 | | i=34.8 | | 9b+4b−2b−4b=14 | | 5z−8=27 | | x^2=-1.5 | | x^2=-1.5x | | 23=x24 | | X^y=6^y | | 5x-4x=-24 | | p–3=-4 | | −2x+8+x+1=0 | | -5x+89=4 | | 13+s=-10 | | 4÷5z=11 | | X^y=6y | | 2k-11=3 | | 126=i/6 | | n+0=3 | | 12x-4=3(4x-2) |

Equations solver categories