7x-4(x-8)=-8x(8-6x)

Simple and best practice solution for 7x-4(x-8)=-8x(8-6x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x-4(x-8)=-8x(8-6x) equation:



7x-4(x-8)=-8x(8-6x)
We move all terms to the left:
7x-4(x-8)-(-8x(8-6x))=0
We add all the numbers together, and all the variables
7x-4(x-8)-(-8x(-6x+8))=0
We multiply parentheses
7x-4x-(-8x(-6x+8))+32=0
We calculate terms in parentheses: -(-8x(-6x+8)), so:
-8x(-6x+8)
We multiply parentheses
48x^2-64x
Back to the equation:
-(48x^2-64x)
We add all the numbers together, and all the variables
3x-(48x^2-64x)+32=0
We get rid of parentheses
-48x^2+3x+64x+32=0
We add all the numbers together, and all the variables
-48x^2+67x+32=0
a = -48; b = 67; c = +32;
Δ = b2-4ac
Δ = 672-4·(-48)·32
Δ = 10633
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10633}=\sqrt{49*217}=\sqrt{49}*\sqrt{217}=7\sqrt{217}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(67)-7\sqrt{217}}{2*-48}=\frac{-67-7\sqrt{217}}{-96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(67)+7\sqrt{217}}{2*-48}=\frac{-67+7\sqrt{217}}{-96} $

See similar equations:

| 14.75p=-5 | | 5x+6-4=2 | | 14+(2x+7)=9x | | a-1/4=-2 | | 8(p-87)=48 | | 0.8n+0.6n=42. | | 2/3(x)-4=4 | | 7n-4(n-8)=-8n(8-6n) | | 5(n-84)=65 | | (r+9)-2(1-r)=1 | | K+3k=4.5 | | 3x+8=4x-4=180 | | -306=18x | | x/6-15=36 | | 5x-4+6=2 | | -3x – 12 = 12 | | 3(h+16)=78 | | 2910x-10)=60 | | 1/2y+1/3=12 | | -6r-36=6(4-2r) | | 5(2x-4)+1=3(2x+1) | | -2(x+4)=-3-5(2x+1) | | -3(-8u+6)-4u=5(u-3)-6 | | 11n-9n=18 | | 2(s-53)=56 | | 17x-4x=26 | | 20v+5v+5=80 | | k^2-7k+1=0 | | 175=23w+83 | | 8x+12=32-2x | | –6k=2k−8k | | 2)3f-12=-3 |

Equations solver categories