If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x-22=-(1/3)(9x+6)
We move all terms to the left:
7x-22-(-(1/3)(9x+6))=0
Domain of the equation: 3)(9x+6))!=0We add all the numbers together, and all the variables
x∈R
7x-(-(+1/3)(9x+6))-22=0
We multiply parentheses ..
-(-(+9x^2+1/3*6))+7x-22=0
We multiply all the terms by the denominator
-(-(+9x^2+1+7x*3*6))-22*3*6))=0
We calculate terms in parentheses: -(-(+9x^2+1+7x*3*6)), so:We add all the numbers together, and all the variables
-(+9x^2+1+7x*3*6)
We get rid of parentheses
-9x^2-7x*3*6-1
Wy multiply elements
-9x^2-126x*6-1
Wy multiply elements
-9x^2-756x-1
Back to the equation:
-(-9x^2-756x-1)
-(-9x^2-756x-1)=0
We get rid of parentheses
9x^2+756x+1=0
a = 9; b = 756; c = +1;
Δ = b2-4ac
Δ = 7562-4·9·1
Δ = 571500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{571500}=\sqrt{900*635}=\sqrt{900}*\sqrt{635}=30\sqrt{635}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(756)-30\sqrt{635}}{2*9}=\frac{-756-30\sqrt{635}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(756)+30\sqrt{635}}{2*9}=\frac{-756+30\sqrt{635}}{18} $
| 0=4y−4y | | -7x-x-18-5=25 | | 7m+18=-56 | | 7x-22=-0.33333333333333333333333333333333333333(9x+6) | | 26+8x=50 | | 4x-5x+16=-3 | | -72=4u=2u-18 | | 7x-22=-0.3334(9x+6) | | 14x+60=102 | | 8-3x+12x-9=17 | | 5m–2=3m+8 | | 13=9x+5-7-4x | | 4x-18+7x=2x+21-4x | | 4x-2-7x=1 | | 15=115-16x^2 | | -7x+5x+15=-5 | | 6x-x+1=-14 | | 13=8-6x-7 | | 32+x+3x=90 | | 9x+5x-3=25 | | 1.2m–17=8+0.7m | | 6x+12-4x=x-21+4x | | 7(a+4)=-12(a+4) | | 9=-1/n-1 | | 11(-2x+5)=-55 | | 9(1+x)=10x | | 8x-8-5x=-10+2x+18 | | 0=-6/f+6 | | -3(×-1)+8(x-3)=6x+7-5x | | -8(9-3x)=72 | | 24=-12(x+4) | | 3w-21=6(w-6) |