7x+20=(3x+3)(5x-10)

Simple and best practice solution for 7x+20=(3x+3)(5x-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+20=(3x+3)(5x-10) equation:



7x+20=(3x+3)(5x-10)
We move all terms to the left:
7x+20-((3x+3)(5x-10))=0
We multiply parentheses ..
-((+15x^2-30x+15x-30))+7x+20=0
We calculate terms in parentheses: -((+15x^2-30x+15x-30)), so:
(+15x^2-30x+15x-30)
We get rid of parentheses
15x^2-30x+15x-30
We add all the numbers together, and all the variables
15x^2-15x-30
Back to the equation:
-(15x^2-15x-30)
We add all the numbers together, and all the variables
7x-(15x^2-15x-30)+20=0
We get rid of parentheses
-15x^2+7x+15x+30+20=0
We add all the numbers together, and all the variables
-15x^2+22x+50=0
a = -15; b = 22; c = +50;
Δ = b2-4ac
Δ = 222-4·(-15)·50
Δ = 3484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3484}=\sqrt{4*871}=\sqrt{4}*\sqrt{871}=2\sqrt{871}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{871}}{2*-15}=\frac{-22-2\sqrt{871}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{871}}{2*-15}=\frac{-22+2\sqrt{871}}{-30} $

See similar equations:

| 14/39=x/29 | | 6(6x+1)=-66 | | 16/5=20/t | | 1/3p+7=2 | | -x+7x=9x-8 | | x/5-8=-9 | | -4(6x+1)=140 | | `-10+6n=-10` | | -2+4/5y=6 | | 5+4x–7=4x–2-x | | 3x+9=-5+3x | | -6(-2x+1)=-78 | | 1=6r–7–2r | | 75+8x=251 | | -5(6x+1)=-95 | | −3−4x=≤21. | | N^2+2n+1=900 | | 3(2x-6)+10=-2x | | Y=4x+22.X=-3 | | 5-2x=1+14x | | 8(1+6n)=-33+7n | | y+6/2=-12 | | –10+4c=2 | | x^2=363 | | 5x-1=x-11 | | 1+5n=3(5n+7) | | -121=x | | 7/9x21/9=14 | | 0.75x+15=17.25 | | 3x^2+11=16 | | 48+(10x-2)=180 | | 48+(10x-2)=189 |

Equations solver categories