7x+(42/x)=63

Simple and best practice solution for 7x+(42/x)=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x+(42/x)=63 equation:



7x+(42/x)=63
We move all terms to the left:
7x+(42/x)-(63)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7x+(+42/x)-63=0
We get rid of parentheses
7x+42/x-63=0
We multiply all the terms by the denominator
7x*x-63*x+42=0
We add all the numbers together, and all the variables
-63x+7x*x+42=0
Wy multiply elements
7x^2-63x+42=0
a = 7; b = -63; c = +42;
Δ = b2-4ac
Δ = -632-4·7·42
Δ = 2793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2793}=\sqrt{49*57}=\sqrt{49}*\sqrt{57}=7\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-7\sqrt{57}}{2*7}=\frac{63-7\sqrt{57}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+7\sqrt{57}}{2*7}=\frac{63+7\sqrt{57}}{14} $

See similar equations:

| 0=122.5-17.5-(350)(1+x)(.18) | | 10−2(4x−9)=12 | | 8=8(v+31) | | 8(t+6)=80 | | 2(m+4)=-6 | | 14x+4=5x+21 | | k/4+17=25 | | h/7+42=48 | | g/9+60=66 | | 20-3x=x+12 | | x+28/7=4 | | z/5+28=35 | | 1=m/4-5 | | 6w+16=28 | | (4.5)^2x=32 | | v/2+34=42 | | 2(3y+1)=  20 | | 16=5x+1=31 | | -3=x=1 | | 9=2x+3=25 | | 4=2x=7 | | 6=x+3=10 | | 10x-16=76 | | x-3.92=-4.74 | | 9(y−5)=  −9 | | 30x^2+60x+40=0 | | 2.1k-4.3k=1.5-2.6 | | 19=-p | | 27x^2-5=0 | | (1/6)^p=(36)^3*(6)^18 | | X-45=x | | x-7-4-2-5-7-5-3-35-5-6=12 |

Equations solver categories