7x(x-5)=3(x+1)

Simple and best practice solution for 7x(x-5)=3(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x(x-5)=3(x+1) equation:



7x(x-5)=3(x+1)
We move all terms to the left:
7x(x-5)-(3(x+1))=0
We multiply parentheses
7x^2-35x-(3(x+1))=0
We calculate terms in parentheses: -(3(x+1)), so:
3(x+1)
We multiply parentheses
3x+3
Back to the equation:
-(3x+3)
We get rid of parentheses
7x^2-35x-3x-3=0
We add all the numbers together, and all the variables
7x^2-38x-3=0
a = 7; b = -38; c = -3;
Δ = b2-4ac
Δ = -382-4·7·(-3)
Δ = 1528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1528}=\sqrt{4*382}=\sqrt{4}*\sqrt{382}=2\sqrt{382}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{382}}{2*7}=\frac{38-2\sqrt{382}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{382}}{2*7}=\frac{38+2\sqrt{382}}{14} $

See similar equations:

| 4x-2=43-x | | 22k+70k=17k-95 | | 4x-5=(2x)(2x) | | (2x-15)=9+7 | | 5y+15=83 | | 12+v=29 | | 5y^2+6y-4=0 | | 180+55=x | | 55+55=x | | 0.28x=0.28 | | 2(2x+4)-5=3 | | 3(6y+7)=24 | | 3(6y+7)=21 | | X^3+8x-20=0 | | 8(7y+3)=34 | | 2(5y+6)=24 | | 2(5y+6)=10 | | 3(5y+8)=50 | | -20x+5000=10x+800 | | 3(8x+9)=-12 | | (7x)^2-10x+14=0 | | 8+x-5=20 | | 2x-1/4=3x+5/9 | | 0.42^x=3 | | 45*16=10q | | 216*2=9k | | 211-43=28m | | x^2-15=50 | | 2(3w+7)=26(w=2) | | 2(3w+7)=(w+2) | | -x^2+69x-1080=0 | | 23=3+4x= |

Equations solver categories