If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(x+15)=203
We move all terms to the left:
7x(x+15)-(203)=0
We multiply parentheses
7x^2+105x-203=0
a = 7; b = 105; c = -203;
Δ = b2-4ac
Δ = 1052-4·7·(-203)
Δ = 16709
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16709}=\sqrt{49*341}=\sqrt{49}*\sqrt{341}=7\sqrt{341}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-7\sqrt{341}}{2*7}=\frac{-105-7\sqrt{341}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+7\sqrt{341}}{2*7}=\frac{-105+7\sqrt{341}}{14} $
| 3x^2-10x+1×=0 | | 4d=-4d+8 | | 6300=x*70 | | 8g-3g=5g | | h/2+37=46 | | 5x=1/5-10 | | 1.3=x | | 4x=+15=x+3 | | 5a²(15+4a)²=0 | | 14a-93=49-67a | | -7+h=-h+9 | | c+14=18+c | | 10x+24=5x+25 | | 125m-75m+42,975=45,900-175m | | 7/3=n/12 | | -¼(16x+4)=11 | | 125m-75m+42,974=45,900-175m | | -39=-3p-3 | | -p+8=3p | | 45=-9+9j | | 125-75m+42,974=45,900-175m | | 5x+1=2x+53 | | 25+13x=180 | | 7x(x+15)=279 | | 8(6x-5)-10=18 | | x^2+x10^(-4.75)-10^(-4.75)=0 | | 25+13x=360 | | 3(x^2-72x-288)=0 | | -9-6j=9-3j | | 24-k=4 | | x^2+x10^-4.75-10^-4.75=0 | | –6(b−88)=–30 |