If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(25-x)-5x=2(3x-25)-3x
We move all terms to the left:
7x(25-x)-5x-(2(3x-25)-3x)=0
We add all the numbers together, and all the variables
7x(-1x+25)-5x-(2(3x-25)-3x)=0
We add all the numbers together, and all the variables
-5x+7x(-1x+25)-(2(3x-25)-3x)=0
We multiply parentheses
-7x^2-5x+175x-(2(3x-25)-3x)=0
We calculate terms in parentheses: -(2(3x-25)-3x), so:We add all the numbers together, and all the variables
2(3x-25)-3x
We add all the numbers together, and all the variables
-3x+2(3x-25)
We multiply parentheses
-3x+6x-50
We add all the numbers together, and all the variables
3x-50
Back to the equation:
-(3x-50)
-7x^2+170x-(3x-50)=0
We get rid of parentheses
-7x^2+170x-3x+50=0
We add all the numbers together, and all the variables
-7x^2+167x+50=0
a = -7; b = 167; c = +50;
Δ = b2-4ac
Δ = 1672-4·(-7)·50
Δ = 29289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(167)-\sqrt{29289}}{2*-7}=\frac{-167-\sqrt{29289}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(167)+\sqrt{29289}}{2*-7}=\frac{-167+\sqrt{29289}}{-14} $
| 3n+21=45 | | (x=-6)5x^2 | | -3=2x^2-4x+1 | | 0.4(x+6)=6+0.25(x-12) | | −(4x−5)−x=45 | | 18–3(x+5)=24, | | 15(3−6x)+24x=45 | | 2d2+8=0 | | 5x^2+x-84=0 | | h-21=-51 | | 10-4(302y=8y-5 | | 0=32-50x^2 | | 7x=12=8x-6 | | 13x-12+4x+12+6x-9=180 | | n=5•3 | | P=s•(1.04) | | 1.25x=1.5(x-2) | | 2x+6=-2+5x+1 | | -4n+6=7n | | 0.65x+0.05(8-x)=0.109(112) | | 7x+23+3x=180 | | 25(7x+21)=9x=22 | | 4.9x+5=1.9x+11 | | 4x-2x+6=-2+5x+1 | | u/2+6=4 | | 4x-2x+6=-2 | | (27x+2)=26x+6 | | .9x=2700 | | x=1/2*x+5 | | 15t^2-16t=0 | | 4.8=-10-x | | 3*3(2x-1)=4x+2 |