7w2+12w+10=4w2

Simple and best practice solution for 7w2+12w+10=4w2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7w2+12w+10=4w2 equation:



7w^2+12w+10=4w^2
We move all terms to the left:
7w^2+12w+10-(4w^2)=0
determiningTheFunctionDomain 7w^2-4w^2+12w+10=0
We add all the numbers together, and all the variables
3w^2+12w+10=0
a = 3; b = 12; c = +10;
Δ = b2-4ac
Δ = 122-4·3·10
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{6}}{2*3}=\frac{-12-2\sqrt{6}}{6} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{6}}{2*3}=\frac{-12+2\sqrt{6}}{6} $

See similar equations:

| d2+d-7=-5 | | 10/15=6/j | | 3948=42(p+15) | | x=(x*100)/(0.02*100^3) | | X+(1/10)x=110 | | x=(x*1000)/0.02 | | x+25=6x-43 | | 19a-4=14a+11 | | 8w+4=11w-2 | | 7^x+3=4^2x-1 | | 13w-16=9w+16 | | 130x-52=9x+3 | | –7−10g=–10g−7 | | 2^2x+3=4^3x-2 | | h/3.2=10 | | 1.6x=1.6* | | a/14=6.8* | | 5x+8+3x+4=-26 | | X+3+x+20=70 | | 3x+x+20=70 | | 4b=48.8 | | (–u+8)(–2u+5)=0 | | x-34=x/4+26 | | 3x+x-20=70 | | -6=(x-7) | | 32=3.2c* | | X+3+x-20=70 | | 3.5x=14.7* | | z/16=8* | | X-5=-5/2y | | 14x-70=12x+18 | | 9x-53°=6x+7° |

Equations solver categories