If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v(v+9)=0
We multiply parentheses
7v^2+63v=0
a = 7; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·7·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*7}=\frac{-126}{14} =-9 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*7}=\frac{0}{14} =0 $
| (3x+13)+(3x+18)=(7x+14) | | 4=-6.8+y | | x-8=56-13(x+6) | | v+23=3v+17 | | 7x-11/8=7x-3/6 | | (7x+7)+(4x+11)=(12x+9) | | 18=17w-8w | | y=2y-18 | | 10b+24=3b+45 | | 10b+24+3b+45=180 | | -7u+-19u−-9u=-17 | | 5n³-30n²+40n=0 | | -15p-5p+14p+7p=-15 | | 3y+15=y-132 | | (7x+6)+(4x+13)=90 | | 6w-18=3w-3 | | g=15-4 | | (7x+6)+(4x+13)+(12x+8)=180 | | 3t-54+4t-46=180 | | 5(x-1)=2x+9 | | 12x+8=20x | | f=20+10 | | u=2u-37 | | 9−3q=3 | | (6x+8)+(4x+14)+(11x+13)=180 | | 17a=238 | | u=75-40 | | y-15=3y-97 | | 18-2/3x=16 | | 7g-9g-9g=11 | | 4p+50+4p+90=180 | | (3x+8)+(2x+19)+(6x+10)=180 |