7u(2)+1=15

Simple and best practice solution for 7u(2)+1=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7u(2)+1=15 equation:



7u(2)+1=15
We move all terms to the left:
7u(2)+1-(15)=0
We add all the numbers together, and all the variables
7u^2-14=0
a = 7; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·7·(-14)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*7}=\frac{0-14\sqrt{2}}{14} =-\frac{14\sqrt{2}}{14} =-\sqrt{2} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*7}=\frac{0+14\sqrt{2}}{14} =\frac{14\sqrt{2}}{14} =\sqrt{2} $

See similar equations:

| -5(x=2)=20+x | | 7t−10=2t | | 5(1+6x)=7+8x | | 9+2j=4j−1 | | 5b+4=3b−4 | | x/1-0.25=x/1-0.25=x/0.75 | | 7u(-6)+1=15 | | 7−(3+4i)+6i=0 | | 2v=8+6v | | 4x2−5x+1=0 | | 7u(0)+1=15 | | 7−(3+4i)+6i= | | x*1-0.25=x/1-0.25=x/0.75 | | 9x+12-6x-12=4x | | -25+5n=6(7n-5)-8n | | x2+2x+3=0. | | √5x+2=√3x+14 | | ×^2+50×=c | | 16-3p=-3+8(p+1) | | ×2-2/3x+1/9=0 | | Q=mC | | 8j+7=41j | | -16=-2+2x | | 10−9q=-7q−10 | | 7m+8+6=38.5 | | | | 3u-3=15 | | 2h=h−10 | | -36m=324 | | | | |20x|=60 | | 14+8n=n+3(7n-7) |

Equations solver categories