If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t(t-4)=25
We move all terms to the left:
7t(t-4)-(25)=0
We multiply parentheses
7t^2-28t-25=0
a = 7; b = -28; c = -25;
Δ = b2-4ac
Δ = -282-4·7·(-25)
Δ = 1484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1484}=\sqrt{4*371}=\sqrt{4}*\sqrt{371}=2\sqrt{371}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{371}}{2*7}=\frac{28-2\sqrt{371}}{14} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{371}}{2*7}=\frac{28+2\sqrt{371}}{14} $
| 56+e=75 | | (0.105+x)(0.105+x)=(7.84x10^-2)(0.139-x) | | 5(1+2m)=1/2(8+20m | | n/5+0.6=2.0 | | 6(1-6p)=-6(-8+5p) | | C=8/3(k-65) | | -5=1/5y | | (x^2+3x)(x^2+3x+5)=6 | | 9+n=20 | | √(4−x)+2=1−x | | 0.1x=0.2(×+2) | | x2+2x−27=0 | | -20-(-37)=x/6 | | 4•5=y-4-3y | | 150x-5x^2=0 | | 3x=16.48 | | 5x-6-x=4 | | 3x+4=-5x-8 | | (4x+7)^2+81=0 | | X=-9y=-9 | | `14-15x+36=1-20x-1 | | 4/3h=15 | | 64x56= | | X=-8y=-15 | | 3x+15=-2x+30 | | 9n-4-n=16 | | X=-11y=11 | | 7-(2n-2)=3-3n | | -3x+2=11;(3,8) | | v^2+4v+9=-2v | | 2x-5+3x=4x-(3+7x | | (3x^2−16)/(9−x)=0 |