7t(t+4)-10=4(3t+2)

Simple and best practice solution for 7t(t+4)-10=4(3t+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7t(t+4)-10=4(3t+2) equation:



7t(t+4)-10=4(3t+2)
We move all terms to the left:
7t(t+4)-10-(4(3t+2))=0
We multiply parentheses
7t^2+28t-(4(3t+2))-10=0
We calculate terms in parentheses: -(4(3t+2)), so:
4(3t+2)
We multiply parentheses
12t+8
Back to the equation:
-(12t+8)
We get rid of parentheses
7t^2+28t-12t-8-10=0
We add all the numbers together, and all the variables
7t^2+16t-18=0
a = 7; b = 16; c = -18;
Δ = b2-4ac
Δ = 162-4·7·(-18)
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{190}}{2*7}=\frac{-16-2\sqrt{190}}{14} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{190}}{2*7}=\frac{-16+2\sqrt{190}}{14} $

See similar equations:

| 8-5(x-2)=3(x+4) | | 1000=800(1+r/1000) | | X/(x+2)=4/3 | | 16x^2+16x-41=0 | | |5x+4|=|8x-2| | | 34-4x=2x-14 | | 29x=330-× | | 5(x+2)^2+23(x+2)+12=0 | | 5(x+2)2+23(x+2)+12=0 | | 12x+30=3x-3 | | x+48=33 | | x+48=34 | | (x+4)/3+(x+2)/2=8 | | -5(-3-z)=z+1 | | 34x-4x=2x-14 | | (X+4/3)+(x+2/2)=8 | | 5(8b-5)=100 | | (X+6/6)+(x+6/5)=2 | | (3/1)+9-y=0 | | 9x^2+28x+6=0 | | 7x/5-1=x-7/5 | | 2y=+7=y | | 2z+10=-8 | | 0.5+4=2b+4 | | 3x=9 | | 0.02(10,000)-0.04y=0.06(y+10,000) | | X+7+x+1=56 | | 0.2(10,000)-0.04=0.06(y+10,000) | | 1/6=(r-6) | | -7/2y=5/4 | | (x)/(6)+(x)/(12)+(x)/(7)+5+(x)/(2)+4=x | | 10p-2(3p-6)=4(3p+3)-8p |

Equations solver categories