If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+43p+6=0
a = 7; b = 43; c = +6;
Δ = b2-4ac
Δ = 432-4·7·6
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-41}{2*7}=\frac{-84}{14} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+41}{2*7}=\frac{-2}{14} =-1/7 $
| x^2-27x-22=0 | | 7x-(4x=9)=4x-42 | | 1/2x^2=5x-17 | | 5v=-15/7 | | 5h^2+8h-4=0 | | 45x-35-30=20 | | 9x-5x+1-2+8x+7x-5+9x=0 | | 15.5x=97 | | 2(6x+1/3)=2/3 | | 7(n+6)+4n=108 | | 3u^2-8u-21=0 | | 8(-5-3x)=-160 | | -3(x+5=2(x+5) | | a+36+25=180 | | 116=8(4-2x)+4 | | 10-4w=10 | | 6x+16+20+90=180 | | 3x-6+6=5x+20 | | +4+3x=6x-2 | | 2b+8-b=6 | | 4(k-5)-3(K+1)-14=-28 | | -8n-4+7n=-12 | | 18=-6v-6+2v | | 0.9y-0.5=4.4 | | 6(z+6)+11=-2z-8 | | 9x3-18x2-4x+8=0 | | 1/2x+10=3/4 | | -15=1+2r | | 3+2=6+1k | | -3(1-2x)=4x-17 | | 12x+36=x² | | 3+3=6+1k |