7p(7-2p)=5(p+4)

Simple and best practice solution for 7p(7-2p)=5(p+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7p(7-2p)=5(p+4) equation:



7p(7-2p)=5(p+4)
We move all terms to the left:
7p(7-2p)-(5(p+4))=0
We add all the numbers together, and all the variables
7p(-2p+7)-(5(p+4))=0
We multiply parentheses
-14p^2+49p-(5(p+4))=0
We calculate terms in parentheses: -(5(p+4)), so:
5(p+4)
We multiply parentheses
5p+20
Back to the equation:
-(5p+20)
We get rid of parentheses
-14p^2+49p-5p-20=0
We add all the numbers together, and all the variables
-14p^2+44p-20=0
a = -14; b = 44; c = -20;
Δ = b2-4ac
Δ = 442-4·(-14)·(-20)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{51}}{2*-14}=\frac{-44-4\sqrt{51}}{-28} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{51}}{2*-14}=\frac{-44+4\sqrt{51}}{-28} $

See similar equations:

| 4-2/4x=-2x/5-5 | | 4p-1=3p+1 | | (.25*x)=24 | | x+15x=-5 | | 3b*b=210 | | (.25*x=24 | | 2a–48+2a–88=180 | | 9p+135=6p+208 | | 4y+21=25 | | 2p-12+p=180 | | 2/8=n+2/4 | | 6+3(x+12)=0 | | 4p-29/2=3 | | 36=(108-3x)/2 | | 5=(3x+22)/2 | | 2w+18=48 | | 2x/12=2/3 | | 9t-76=8t-63 | | 1-10a=14+3a | | 2x-74=x-22 | | 15x^2-196x+196=0 | | (6+2x)(4x)/2=60 | | 2b-56=b | | 4/5b=-20 | | X+(x/4)=120 | | 5x−8=2x+1 | | -5c-1=20c+49 | | 2b=7b-50 | | 5x–14=8x+4 | | 19=-7f+2f | | 11n-1=90 | | 7c+9=4c+51 |

Equations solver categories