If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7p(3p + 4) = -2(2p + -1) + 10 Reorder the terms: 7p(4 + 3p) = -2(2p + -1) + 10 (4 * 7p + 3p * 7p) = -2(2p + -1) + 10 (28p + 21p2) = -2(2p + -1) + 10 Reorder the terms: 28p + 21p2 = -2(-1 + 2p) + 10 28p + 21p2 = (-1 * -2 + 2p * -2) + 10 28p + 21p2 = (2 + -4p) + 10 Reorder the terms: 28p + 21p2 = 2 + 10 + -4p Combine like terms: 2 + 10 = 12 28p + 21p2 = 12 + -4p Solving 28p + 21p2 = 12 + -4p Solving for variable 'p'. Reorder the terms: -12 + 28p + 4p + 21p2 = 12 + -4p + -12 + 4p Combine like terms: 28p + 4p = 32p -12 + 32p + 21p2 = 12 + -4p + -12 + 4p Reorder the terms: -12 + 32p + 21p2 = 12 + -12 + -4p + 4p Combine like terms: 12 + -12 = 0 -12 + 32p + 21p2 = 0 + -4p + 4p -12 + 32p + 21p2 = -4p + 4p Combine like terms: -4p + 4p = 0 -12 + 32p + 21p2 = 0 Begin completing the square. Divide all terms by 21 the coefficient of the squared term: Divide each side by '21'. -0.5714285714 + 1.523809524p + p2 = 0 Move the constant term to the right: Add '0.5714285714' to each side of the equation. -0.5714285714 + 1.523809524p + 0.5714285714 + p2 = 0 + 0.5714285714 Reorder the terms: -0.5714285714 + 0.5714285714 + 1.523809524p + p2 = 0 + 0.5714285714 Combine like terms: -0.5714285714 + 0.5714285714 = 0.0000000000 0.0000000000 + 1.523809524p + p2 = 0 + 0.5714285714 1.523809524p + p2 = 0 + 0.5714285714 Combine like terms: 0 + 0.5714285714 = 0.5714285714 1.523809524p + p2 = 0.5714285714 The p term is 1.523809524p. Take half its coefficient (0.761904762). Square it (0.5804988664) and add it to both sides. Add '0.5804988664' to each side of the equation. 1.523809524p + 0.5804988664 + p2 = 0.5714285714 + 0.5804988664 Reorder the terms: 0.5804988664 + 1.523809524p + p2 = 0.5714285714 + 0.5804988664 Combine like terms: 0.5714285714 + 0.5804988664 = 1.1519274378 0.5804988664 + 1.523809524p + p2 = 1.1519274378 Factor a perfect square on the left side: (p + 0.761904762)(p + 0.761904762) = 1.1519274378 Calculate the square root of the right side: 1.073278826 Break this problem into two subproblems by setting (p + 0.761904762) equal to 1.073278826 and -1.073278826.Subproblem 1
p + 0.761904762 = 1.073278826 Simplifying p + 0.761904762 = 1.073278826 Reorder the terms: 0.761904762 + p = 1.073278826 Solving 0.761904762 + p = 1.073278826 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.761904762' to each side of the equation. 0.761904762 + -0.761904762 + p = 1.073278826 + -0.761904762 Combine like terms: 0.761904762 + -0.761904762 = 0.000000000 0.000000000 + p = 1.073278826 + -0.761904762 p = 1.073278826 + -0.761904762 Combine like terms: 1.073278826 + -0.761904762 = 0.311374064 p = 0.311374064 Simplifying p = 0.311374064Subproblem 2
p + 0.761904762 = -1.073278826 Simplifying p + 0.761904762 = -1.073278826 Reorder the terms: 0.761904762 + p = -1.073278826 Solving 0.761904762 + p = -1.073278826 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.761904762' to each side of the equation. 0.761904762 + -0.761904762 + p = -1.073278826 + -0.761904762 Combine like terms: 0.761904762 + -0.761904762 = 0.000000000 0.000000000 + p = -1.073278826 + -0.761904762 p = -1.073278826 + -0.761904762 Combine like terms: -1.073278826 + -0.761904762 = -1.835183588 p = -1.835183588 Simplifying p = -1.835183588Solution
The solution to the problem is based on the solutions from the subproblems. p = {0.311374064, -1.835183588}
| -d=-31 | | 6.2x+18.1=1.03-2.21x | | -2(7x-4)=-20 | | 6w+9=78 | | =27-3b^2 | | -5x-48=6.7 | | 125m-100m+38200=41000-175m | | 200=225+80n | | 3x=7a+5 | | 6x-4=1+x | | 2=(4l-2) | | -60+11x=36+7x | | 88=-4(-7+3x) | | 8+4x-3-5x=16 | | 150=-25+5x | | 1200+10x=3230-190x | | (x+2)-4=0 | | 2r^3-r^2-72r+36=0 | | 0.80x+0.05(18-x)=0.10(-126) | | 6x^4+x^2=0 | | (-0.06)(400)= | | 15h-1800=1200 | | 96h-23h-26h-44h-1=68 | | 101=5+4x | | 705-205-325=x | | Y=5+2z-5x | | 225+80(6)=x | | 6-2(3x-1)+9x= | | 10x+1=x+7 | | t^6=t^4 | | 3x+3=-106 | | 46-15=9(3+38) |