If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-49n=0
a = 7; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·7·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*7}=\frac{0}{14} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*7}=\frac{98}{14} =7 $
| 21x+70=-140;x= | | 0=19x-38;x= | | -17r+20r-11r+5+17=-10 | | 6w-10=44 | | p+8-3=14 | | 5x-10=3(x+2+x) | | 2^2x-^10=4^3x-^1 | | 5-x^2+1=6-x^2 | | -16/g=8 | | -1.1x=-20.9 | | -7x=+6=41 | | 4f=75-7 | | 73x–4=49 | | 2x-(3x-4)=-2 | | 1/3(6x+12)-4(x-5)=14 | | 6/n=2/9 | | E^-4x=16 | | 4-t=34 | | 120=5x20 | | 0.16x+0.9(x-5)=0.01(2x-5) | | x/(–8)=–6 | | -3(4n-2)=-90 | | 6^x+6^x+6^x+6^x+6^x+6^x+6^x=6^6x | | 2p+19=32 | | y=1200(1.2) | | n=1∑29 (3n−11) | | .5=p/100 | | {x^2}=196 | | 7x^2+33x=8000 | | 6x+6=6(X+6)=1 | | (2x+3)=(x+9) | | -18m-14=12m+2 |