If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+4n-7=0
a = 7; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·7·(-7)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{53}}{2*7}=\frac{-4-2\sqrt{53}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{53}}{2*7}=\frac{-4+2\sqrt{53}}{14} $
| X-(x*0.09)=91 | | 9x2-8x-4=0 | | 8x^2-34x-594=0 | | X-(x-(X-x*0.095))=91 | | (2x−3)=(3x+2) | | 4/3+1/6=p | | 8x-9=-22 | | 4s2-9s-8=0 | | 5y+13=10-2y | | 30=6=4x | | 22y+6=138 | | X-(x*0.095)=91 | | 8(1y+5)=-4(y-22) | | -6u+3u+7=-7-u | | X-09x=91 | | X-0.095x=91 | | .25+7=4(x-2) | | 5n+n=90 | | 7+2h=-h-8 | | 2.25x=-3 | | 5(w-6)-7w=-16 | | 9y+6=123 | | -(2w-27)=-(9w+8) | | X-(x*0.13)=91 | | x²-2x=12 | | 7=a/3-9.2/3 | | 8x-4x=x+3+4x | | (2x-3/5)=4 | | y′′+6y′+9y=0 | | 7(6m-4)=3 | | 6x=5-20 | | -7(6m+8)=-224 |