If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+20n-32=0
a = 7; b = 20; c = -32;
Δ = b2-4ac
Δ = 202-4·7·(-32)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-36}{2*7}=\frac{-56}{14} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+36}{2*7}=\frac{16}{14} =1+1/7 $
| 2r+1=16 | | 2x-25=-4x-1 | | 2/7d=5/14 | | 2.1b=3.4 | | 1/3x+1=-x+1/5 | | 6+4/x=38 | | x^2-11x-84=0 | | 12+1/3x=24 | | 4x+x-6-15=-3(x-1)+2x | | 3*y=22.8 | | 29.8/r-98.4=0 | | 2(x+3)-5x=46-7x | | 2(3x-5)-3(x-4)=-2x+3 | | 6–2d=42 | | 12x-7/5= | | 22=12m+12 | | 4x+20-6x=-5x+23 | | 5x^2-22-11=0 | | z+1/5=3 | | 5x=4x+-8 | | 12x-15x-60=40-28x | | x/33=3/11 | | 34*z=91.8 | | 8x+11=38 | | 3(x-5)-9=0 | | 7+2v=9 | | 12x-3x+x=90 | | 2.4c=16.8 | | 6-7(x+7)=-4x-25 | | 2.3+5=-x-7 | | 13x+0.5x=4400 | | x/7+x/3=-3 |