If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+-43n+6=0
We add all the numbers together, and all the variables
7n^2-43n=0
a = 7; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·7·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*7}=\frac{0}{14} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*7}=\frac{86}{14} =6+1/7 $
| x-2+3x=22 | | 5n-9=7n+5 | | 3(5f)+1(2*5)=3f+20+17+3*27 | | M2+8m-8=0 | | 2x+60=46x | | 12=5w+w | | (21x-9)+x=180 | | x+4x+3x=112 | | 5(6x-2)=220 | | 4.7x=2.5 | | 4.7=2.5x | | 0.25e-14=27 | | 1/2•a=11 | | -7-2y=11 | | -7(-2y)-2y=-13 | | 7(x+5)=9x-3 | | 3-(4x-1)=5(x+3)+2 | | -7(-10+6x)=-266 | | 1/2(q+1)=4/3-9 | | -3=1/2x+1/2x+x | | 6(-7-5x)=228 | | 15-1=4-6s | | 5-7x-3x=45 | | 5(-4x+6)=190 | | 3.4+2.8x=4.7-8.2x | | 6x+15=-149-10x | | -7(5+2x)=-161 | | 30x^2+156x-144=0 | | 20d2+26d+8=0 | | 4(-6x-9)=-180 | | 5(4x-7)=-35 | | 51-33=n+4 |